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While synchronization of coupled chaotic systems has been the subject of intensive research, many issues in
this field remain open. Among the most important of these is robustness to channel noise: Can synchronization
be guaranteed even if the coupling channel is noisy? This issue is of great significance if coupled chaotic
systems are to find use in communications, as has been suggested by some researchers. In this paper, we show
that chaotic maps can indeed be synchronized reliably even in the presence of some types of channel noise,
simply through the use of thresholding. This synchronization is reliable and rapid enough to be useful in
digitally implemented systems with finite precision. We also outline a simple communication scheme using the
proposed synchronization methd&1063-651X%99)00901-F

PACS numbd(s): 05.45.Vx

I. INTRODUCTION [27,28. The map we use is the difference of two hyperbolic
tangents
Following the pioneering work by Pecora and Carroll
[1,2], there has recently been a surge of interest in the issue  y  —f(x,,u,)=tanH u(ax+u,)]—tanH ubx (1)
of synchronization in chaotic systeni8—5]. While most e et Lu(@xtu] Lubx,]
work has focused on continuous-time systems, there are also

some studies of synchronization between coupled discreté/‘-’here U is an exteral input. I,=0 V t, increasingu

time maps[6-9,5,10—1k Large systems of coupled maps with fixed a andb leads to chaotic dynamics through period

have been investigated in detail by several researchers and’qUP!ing[29,30. If »,a, andb are.such_that the autonomous

variety of complex behaviors, including clustering and syn-MaP 1S chaotic, applying a fixed input=u V t leads to a

chronization, have been fouridi6—23. per!od-halvm_g cascade with increasing culminating in a
A major concern in all schemes for synchronizing coupledP€iod-2 regimg31]. Thus, for any fixeds, the mapf (x,u)

oscillators is robustness against noise in the channel carrying@S & definite Lyapunov exponeuu), which is positive for
the coupling signal. It is well known that, for chaotic oscil- SMallu (except in periodic windowsand negative for larger

lators, synchronization can be disrupted intermittently or per! [27]. ) _ . .
manently in drastic ways by even a small amount of additive NOW consider two identicaf(x,u) maps driven by the
noise[24,12,29. In some cases, it is possible to overcomefandom telegraph signalRTS) uie{L,H}, where G<L
this by increasing the strength of coupling, leading to the<H:
notion of high-quality synchronizatioh26,12.

In recent reportd27,28 we have shown that identical Xt =f(x¢,up) =tanq u(axi +u)]—tanf ubx'], (2)
chaotic maps of a certain type can be synchronized when
driven by the same random two-level switching signal. Since
the drive signal is digital in nature, additive channel noise Xgr1= ¢ u) =tant u(ax; +uy) ] —tan ubx?]. (3)
can be removed from it by simple thresholding, making the
synchronization robust against such noise. In this paper w&he input takes on the valuewith probabilityp andH with
demonstrate the utility of this idea. The rest of this papermprobability 1—p. Over a wide range of parameter settings,
consists of four sections. In Sec. Il we look at synchronizathe two maps synchronize within a short perf@d]. This is
tion between uncoupled maps driven by an externally supthe result ofcoalescencea phenomenon analyzed in some
plied digital signal. This extends our previous work reporteddetail by otherg§32,33,7,34—3p For synchronization to oc-
in [27]. In Sec. Ill we develop results for synchronization cur, the system and the input signal must satisfy some con-
between coupled maps with internally derived digital signalsditions, which we discuss next.
and these results are analyzed in Sec. IV. Finally, in Sec. V, Definee,=x!—x? as the error phase variable for the sys-
we outline a possible application for the system in maskedem, with the dynamics
communications.

e1=F (& ,th U= f(th Uy — f(th_et JUyp).
II. SYNCHRONIZATION OF MAPS VIA RANDOM

DRIVING . . . .
Clearly, e,=0 is an invariant manifold for the system’s dy-

We begin with a discussion of how two identical maps ofnamics. The stability of this manifold is determined by the
a certain form synchronize when driven by a common digitaltransverse conditional Lyapunov expongBLE) along the
signal. This extends and refines the results presented ifx},u') trajectory on thee,=0 manifold. This is given by
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A=(In[dF (e, Xt ,up/deg])=(Inf" (x,u)])

+T-1
=lim= > In|f'(x},uY], 4) =
Towl 7

where the partial derivative is evaluated alanpg 0, angular
brackets indicate averaging over the invariant distribution of
(xtl ,U;) (if it exists), andf’(x,u) is the derivative off (x,u)
with respect tax. Thus the CLE of the synchronized trajec-
tory for a time-varyingu, with a stationary distributiof® (u)

can be approximated by\=[,P(u)\(u)du. When u;
e{L,H} we get

A=pA(L)+(1—=p)A(H). ©)

bin count

Thus, by choosing, L, andH appropriately, we can control
the sign of the CLE for the synchronized trajectdB77].
(Note that our use of the term “Lyapunov exponent” for a
stochastically driven system follows the practice of other re-
searcherg32,33,7,34—-3p) Also, as we have shown else-
where, many other input distributions can also produce a \
negative CLE, entailing stable synchronizati¢@8,31]. 50 ““

\ Al

However, as discussed below, a negative CLE is not a suffi-§
cient condition for synchronization to emerge. In addition, in £
systems with finite precision, a negative CLE may also not o
be a necessary condition. °

Assume thaH is chosen such that,=H puts the system
in a period-% regime. There are then2lomains of attrac-
tion, one for each phase.uf were permanently set td, our FIG. 1. Evolution of the state histogram for 50 identical maps
two-map system would have?? stable configurations, but with x=7.0, a=5.0, andb=1.0. The initial condition for théth
only 2 of these would have identical phases. Thus, evemap is given byx§=0.02k—1),k=1,...,50,giving a uniform
though A would be negative, the maps could converge to edistribution. All maps get identical input¢a) random telegraph
configuration with different phases, precluding synchronizasignal inputu;{0,1}, (b) fixed inputu,=0 V t (chaotic phase
tion. Now suppose that, after a long period with=H, it is and(c) fixgd input.ut:. 1Vt (periodic.phas.)e. Synghronization is
temporarily set toL, which puts the system in the single- apparent |r(_a), while in (c) the populatloq divides _mto two groups
band chaotiqmixing) regime. The only periodic configura- COrresponding to the phases of the period-2 orbit.
tions that are guaranteed to survive this episode are the 2
phase-matched ones. All others are rapidly disrupted. Over (i) The Lyapunov exponent of the random méfx,u)
several switches betwean=H and u,=L, the system is must be negative, i.e., the relative frequencied aind H
driven to a phase-matched state by a process analogous nwust be such that the resultidgvalue is negative. Note that
annealing, providedA is negative. The latter condition a negativeA does not preclude aperiodicity since it is only a
means that, even if the system does not continuously stay iponditional Lyapunov exponertivith respect to the random
the periodic regime long enough to converge precisely to ariving inputu,). The total &, ,u,) system is still aperiodic,
periodic configuration, such convergence dominates expowith the randomness af; supplying the volume expansion
nential separatioon averageand configurations close to be- necessary to prevent collapse to a periodic attractor. Quali-
ing phase-matched are usually, but not alwésee below, tatively, the dynamics ok; consists of alternating variable
disrupted less quickly in the mixing regime than configura-length episodes of chaotic and periodic evolution.
tions with very different phases. Synchronization by this pro- (ii) L must be chosen to put the system in the single-band
cess is therefore a statistical phenomenon. chaos(mixing) regime andH to put it in a low-period cyclic

To illustrate these points, Fig. 1 shows how a set of 50regime. ChoosindH is typically a simple matter since the
uniformly distributed initial conditions evolve in response to period-2 regime is very extensive. To chodseve need to
three types of driving inputga) a RTS inputu;,e{0,1} and  know the value ofu, designateds*, where the mixing re-
p=0.5, (b) a fixed input ofu;=0.0 V t (mixing only), and  gime ends. Whem is such thaff (x,H) is a period-2 orbit,
(c) a fixed input ofu;=1.0 V t (period-2 only. As ex- the two basins for the phases of the orbit are separated by the
pected, synchronization occurs only in the first case. In theinstable fixed poink* =f(x* ,H). For maps with large.a,
caseu,= 0.0, the system evolves rapidly to the invariant den-the tail of f(x,u) is approximated accurately biyx,u)=1
sity of the chaotic map, while fon;=1.0, it coalesces into —tanh(ubx), so that the fixed point is given by the solution
two clusters, one for each phase of the period-2 cycle. of x* =1—tanh(ubx*) and is effectively independent of

The above analysis gives us the following conditions onThe boundary value ofi for single-band chaos can then be
u; e {L,H} for synchronization to emerge. stated as’* = u: f(0,u) =x*, which gives
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th+1:G(th,Ut):(4_Ut)xt1(1_xt1)’

0.06}
X2, 1=G(XZ,u)=(4—u)XZ(1— XD,
0.05}
with u,€{0,1} as before. We find that the Lyapunov expo-
- 004 nent of the random mapgsnd thus the CLE of the synchro-
5004}

nization manifold becomes negative whem<0.95 or so.
However, synchronization only occurs far=0.5 or less.
003} ] The reason is that, whem=0 and the maps are in chaos,
most values ofdG(X,u)/dX| are quite large, implying large
positive local Lyapunov exponents that grow rapidly with
Thus synchronization cannot take hold if the system spends
significant periods in the mixing regime apdnust be made
very small. Of course, synchronization would also not hap-
pen if p=0 since some mixing is essential. Thus the range of
FIG. 2. Comparison of the empirically determined maxirhal p in which logistic maps can synchronize is very narrow. In
value needed for synchronization>() and the theoretical value contrast, thef(x,u) map that we use ha®f(x,u)/dx|<1
given byu* (solid line) for different values ofu. In all casesa  over a large part of its domain even in the chaotic regime.

002}

=5.0, b=1.0, andp=0.5. This ensures that local Lyapunov exponents grow relatively
slowly with T, which translates into a larger rangembver
u* =tanh 1(x*)/ u. which synchronization happens. Thus, while the synchroni-

zation process we describe is quite general, it is more suit-
Synchronization requires=<u*. Figure 2 shows the actual able for maps where expansion is localized in small regions
empirically determined threshold value lofneeded for reli-  of phase space during the mixing regime.
able synchronization and the theoretical valuie over a We term the synchronization process discussed above
range ofu with a=5.0p=1.0, andp=0.5, confirming the coalescence-based synchronizatitm distinguish it from
validity of the L<u* requirement. Analogous calculations methods based on differential feedbd¢k7,9,11,1% The
can be made for the required value Iofif u=H puts the dependence of coalescence on local Lyapunov exponents
system in a 4- or 8-cycle. makes it susceptible to two phenomena that occur also in
While a negative CLE is essential for synchronization, itfeedback-based schemes to a lesser degree. Theattrare
is not a sufficient condition. The emergence of synchronizator bubbling [24] and on-off intermittency[32,33,37,25
tion also depends on localized characteristics of the dynantHowever, when the underlying system is implemented digi-
ics and the maps. For example, suppose that the systef@lly with finite precision(e.g., a digital communications sys-
switches into the mixing regime at timtg with |e |=|x; ~ {ém or an encryption programboth bubbling and intermit-
—x2|:5 where § is very small, and remains there f&r tency are mmgate_d in broad regimes, as discussed below.
EUNR e o e ) Attractor bubbling[24] occurs because the CLE for the
steps before switching back into the periodic regimel 1§ synchronized trajectory can be negative without precluding
not too large, the growth of the absolute error is approxifinite-duration episodes of divergence between nearby trajec-
mately given by tories due to positive local Lyapunov exponents. However,
since the synchronized trajectory is the only long-term at-
tractor, these episodes of desynchronization are always tran-
|et1|’ sient (if there are other attractors, one gets basin riddling
[38]). Over time, the trajectory spends most of its time in or
near the synchronized state, with rare interruptions. How-
grer, for systems implemented digitally, finite precision en-
sures that the desynchronization episodes cease once syn-
Ichronization error has fallen below numerical precision.
Empirical data shown in Fig. 3 indicate that, beginning with
leg| ~O(1), thetime, 7. needed for|e| to fall below e

t+T—1

|et1+T|~[ tl_! (&, Uy

=l

where £,=(xt +x?)/2. Clearly, the extent to which the near
synchronization survives this episode depends on the actu
values off’(&;,u;) over the finite duratiort; to t;+T—1
and not so much on whether the overall conditiona
Lyapunov exponent is negative. The quantity

t+T-1 scales as.~log;o(1/€). Thus synchronization to even very
AcOXE X2 U, o U sroq) == Inlf’ high precision occurs within a short time.
T Xy et T tgl () On-off intermittency[32,33,37,25,3P which is the con-

verse of bubbling, occurs when the CLE for the synchro-

is called alocal Lyapunov exponerft7,34] and is, in this nized trajectory is positive, but there are finite-duration epi-
case, a random variable. The dynamics of synchronizatiosodes of convergence between trajectories due to negative

depends also on the distribution of the local Lyapunov expotocal Lyapunov exponents. This results in intermittent lami-
nents, which in turn depends on the underlying map, thenar and turbulent periods with characteristic scaling in their

invariant disctribution of the dynamics, the initial conditions, duration. Again, if the system is implemented with finite
and the realization of the driving random process. precision, these episodes of convergence can lead to actual
To take a concrete example, consider two identical ransynchronization when the trajectories of the two maps come
domly driven logistic maps of the form closer than the system'’s precision. Thus finite-precision sys-
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50 y y y 5 cillators are termed thdrive oscillator (d) and theresponse
o oscillator (r) and the system is given by
¢
¢
35 o0 yia=fy(y!.z) =tanKw,[Cy{ + Ba(2{ , 6,)]}
—_ o
© o —tanh(u,Dyy), (6)
o
15} 00 00007 " Zte1= T2 Y0 =tantu{AZ + aglfy (v, 2)), 0,1)
x X
@@§9xxxxxx —tanh( u,BZ), (7
0 L L L
2 _ 1 16 Vie=fy(y1.2) =tantu {Cyi+ Bblg(,0) + m]})
log,, (€)
—tanh(u,Dyy), (8)

FIG. 3. First passage timg as a function of synchronization
tolerancee for x! andx?. The system parameters aue=7.0, a d
=5.0, b=1.0, ufe{o,l}t‘ and p=0.3(x), p=0.5(0), and p zi,1=fz,yp) =taniu Az + ag[fy(y{ Z),0,1})
=0.7(¢). All simulations were done at a precision of 6. Note _ r
the linear dependence tf on log,o(1/€). Each point was averaged tank(p,Bz), ©)

over 100 random initial conditions. .
where uy,u,,A,B,C,D,a, andg are fixed parameters and

tems can synchronize even when the CLE is positive Howg(x’a) _is a thresholding function_that trns its analog argu-
y mentx into a telegraph signal. It is defined as

ever, such synchronization would be disrupted very easily by
a small perturbation.

To summarize the discussion in this section, we can iden- 9(x,0)=
tify four broad regimes with respect to synchronization in ’
systems with finite precision.

(i) An asynchronous regime with a positive CLE. Syn-whereL andH are constants and is a specified threshold.
chronization is not stable on average and local LyapunoWor simplicity, we assume that,= 6,=6,L=0.0, andH
exponents are not able to drive the system into finite=1.0. We also assume= 8, though a broad range of values
precision synchronization. can be used instead. The coupling between the oscillators is

(i) An asynchronous regime with a negative CLE. Syn-provided only by theg(z®, 6) signal generated by the drive
chronization is stable on average, but eith@ local system. The signal received by the response system is
Lyapunov exponents during the mixing phase are toqy(z%,6)+ 7,, wherey, is zero-mean additive channel noise.
strongly positive to allow sufficient convergence of trajecto-\we assume that there is no essential noise in the system, i.e.,
ries in general orb) L does not place the system in the the noise is added only to the coupling signal, not to the
mixing regime. system’s phase variables. The functigi) is a threshold

(iii) A synchronous regime with a negative CLE. Syn-filter that attempts to recover the correct digital signal from
chronization is stable on average and trajectories converge e received noisy one:

within any finite precision in linear time. This is the regime
of primary interest and utility from our viewpoint. Note that L if x<L+(H—L)/2
while finite precision makes synchronization reliable and d(X)=
nonintermittent, synchronization is noausedby finite pre-
cision. That is shown by the linear dependence of synchro- ) ) )
nization time on numerical precision. This, of course, corresponds .to qptlmal_estlmatlon for zero-
(iv) A synchronous regime with a positive CLE. Synchro- Méan noise with a symme@nc_ d|s_tr|but|on. If the a(_jdmve
nization is unstable on average, but local Lyapunov expol0ise has another known distributiog(x) can be defined
nents are sufficiently negative to drive trajectories closer tha@PPropriately. Clearly, if7 has a distribution with bounded
system precision. This requires that at least one Lyapuno$UPPort[—c,+c] (e.g., a uniform distribution the system
exponent for the underlying system be negative. Some ofill be immune to its effect whilec<<(H—L)/2. If # has

these regimes are discussed below in the context of coupldffinite support(e.g., a Gaussian distributiprout is largely
maps. confined to a narrow band of width less thdr- L, synchro-

nization will be robust with rare episodes of intermittency.
The system described in Eq$)—(9) can be seen as two
subsystems of the type discussed in SefEds.(2) and(3)].

A natural question that arises from the foregoing results iThe (/f ,y) subsystem is driven by the “external” input
whether the RTS input used for synchronizing can comed(z{,6,) and the ¢ ,z) system is driven by external inputs
from another aperiodic or chaotic map. In that case, on@(y?,ez) andg(y; ,6,), respectively, which become identi-
would have a synchronizable deterministic system. We studgal once they signals synchronize. Thus the processes de-
this issue by defining a system comprising a pair of identicakcribed in Sec. Il apply directly to the coupled subsystems,
two-dimensional maps. Each map, which we henceforth ternexcept that the aperiodic driving inputs are now coming from
an oscillator, is constructed from twd(x,u) maps. The os- another map rather than from a stochastic process.

L if x<@

H if x=6, (10

. 11
H otherwise. (1)

IIl. SYNCHRONIZATION IN COUPLED MAPS
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FIG. 4. Dependence o and a= 3 of synchronization prob-
ability for a pair of coupled oscillators with noise-free coupling, {b) Gaussian Noise
with u,=u,=7.0, A=C=5.0, andB=D=1.0. White indicates
that synchronization always occurred in 20 independent runs. See
the text for a discussion.

We begin by showing that the system described above
synchronizes in the absence of channel noise. The synchro-
nization error in they andz variables, respectively, is defined
as

y _,d _ . _ y ,,d 5d
€17 Yir1 Yir1= Fy(€f,Y1,20),

z _d ro_ z .y ,d .d
€172+ 1— Z+ 1= FA(€, 6, Y, Zp),

o
-

0.5

and €’,e¥)=(0,0), which is an invariant manifold for the 0

system's dynamlcs,. 1 termed tlsgnchromza'gon mameld FIG. 5. Dependence o#l of synchronization probability for a
(SM). The local stability of the SM along eyf \Z;) trajector_y_ pair of coupled oscillators withu,= u,=7.0, A=C=5.0, B=D
can be evaluated by looking at the transverse conditional 1 g anda=g=1.0. The channel carrying the synchronizing sig-
Lyapunov exponent$CLE’s) for the (e{ ,€f) system. The nal is subject to(@) uniform noise betweertc and (b) Gaussian
Jacobian along the trajectory is given by noise with variancer?. White indicates synchronization with prob-

y 5 ability 1 over 10 independent runs.
dFy 19’ dFlde

JF,19e¥  dF,le*] are shown in Fig. 4. There is a distinct parameter range

SincedF, /ge*=0, the eigenvalues df are simply the diag- (white region in the figure where synchronization does
Y emerges reliably.

onal elements, which allows the evaluation of the two trans- N .
The dependence of synchronization an(and B) is as

verse CLE’s i .
expected. If it is too small, the maps never enter the periodic
+T-1 regime and the CLE’s are positive. Once this threshold is
Ay=lim T > In|oF,/d€Y|, (12 met, any value ofe and 8 will do. L=0 ensures that the
Tow ! 177 maps always spend time in the mixing regirtie ¢ is set
+T—1 appropriately. The dependence of synchronization éris
A=lim= S In|oF, /a7, (13 ~ more complex. Synchronization seems to oceur in two strips:
Tl =1 one for small # values and one approximately given by

0.23<6=<0.50. The reasons for this pattern are discussed

where the derivatives are evaluated a¥,€?)=(0,0). Note further in Sec. IV.
that, as in the case of one-dimensional mépsc. I), the Finally, we look at whether synchronization occurs as ex-
CLE’s are expected to be negative in the synchronizatiompected in the case when channel noise is present. Figure 5
regime. HoweverA, and A, are not the Lyapunov expo- shows the probability of synchronization for the uniform and
nents of the ¥;,z) system and their negativity does not Gaussian noise cases for a pair of oscillators witf* u,
imply a lack of chaos. As we show below, the synchronized=7.0, A=C=5.0, B=D=1.0, «a=$=1.0, and {L,H}
trajectory is indeed chaotic in most situations. ={0,1}. The dependence on the noise strength is as ex-

To determine whether synchronization actually emergespected, with a sharp cutoff at=(H—L)/2 for uniform
we simulated the coupled oscillator systemdné space, noise. For Gaussian noise, synchronization cannot be certain
with A=C=5.0, B=D=1.0, andu,=u,=7.0. As men- because the probability of suprathreshold noise is nonzero.
tioned earlier, we us@=« and{L,H}={0,1}. The results However, synchronization is obtained with high probability
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FIG. 6. Graph(a) shows the two Lyapunov exponents and A, for the two-dimensional map given by Eg®) and (7), with u,
=uy=7.0, A=C=5.0, B=D=1.0, anda=8=1.0. Graph(c) shows the CLE's\, and A in the same situation. Grapkis) and(d) show
the same data ds) and(c), respectively, with finer resolution over the windows®<0.05.

(i.e., with rare episodes of desynchronizajiithin a range (i) Synchronization for 8:6<0.027 is actually more
of ¢ values. The dependence @his as for the noise-free complicated than it looks in Fig. 4, which has a resolution of
case. only 0.005 along the? axis. Figure @) indicates that the
0<#=<0.027 region has a finely interwoven structure of cha-
IV. DISCUSSION OF RESULTS otic and periodic windows. In the chaotic windows, synchro-

nization occurs as described earlier and the synchronized tra-

In this section we discuss the results shown in Fig. 4jectory is chaotic. However, synchronization can also happen
which elucidate the processes underlying the synchronizatiof the periodic windows because of a transient effect.
phenomenon. An important issue that arises is whether thenhough the system is not chaotic, the chaotic transient in
synchronized trajectory obtained in our coupled maps is chaeyolving to the periodic orbit is long enough to allow syn-

otic at all. This question is particularly relevant because th%hronization, i.e., the system uses the chaos before it disap_

conditional Lyapunov exponents, and A, are generally pears. This is supported by the fact that the Lyapunov expo-
expected to be negative for both drive and response maps In

the synchronization regimes. However, this does not mean 1=
that the dynamics of the drive and response maps is noncha- e
otic. To verify this, we numerically calculatetO] the two 03

Lyapunov exponents; and\, of the map defined by Egs. 06}3
(6) and (7) with pu,=u,=7.0, A=C=5.0, B=D=1.0, a >~“04 E
=pB=1.0, and different values of. We use\, to indicate '
the larger Lyapunov exponent. Figureg@6and &b) show 0.2}1

that the\, is positive for >0.027 and for many smaller
values too. However, the conditional Lyapunov exponents
Ay and A, do not become positive unt#>0.35. As ¢ in-
creases further, the coupling between yhand z maps be-
comes weaker and at=0.5 both Lyapunov exponents for
the map become positive, which is the condition of maxi-
mum hyperchaos found in weakly coupled chaotic maps and
some other noninvertible systerf®l]. Finally, when# ex-
ceeds the maximum valug or z, takes(about 0.613), thg
andz maps become uncouplésinceL =0.0) and behave as
independent chaotic maps with Lyapunov exponents of about
0.41. Figure 7 shows the bifurcation diagrams foryrendz 0 02 04 06 08 1
maps as is changed. o

A comparison of these results with the synchronization F|G. 7. Bifurcation diagrams for the map given by E¢@.and
results of Fig. 4 provides insight into the pattern of synchro-(7) as ¢ is varied. The parameters are set as in Fig. 6. Compare the
nization. bifurcation diagrams with Fig.(@).
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nents(LE’s) for the system are only weakly negative in the pendent of the system. The goal of our system is to provide
periodic windows, suggesting slow convergence. Of coursagliable masked communication in the presence of channel
the synchronized trajectory obtained in these cases is pemoise.
odic rather than chaotic. The information signal ¢,k=0,1,2 ..., takes values 0
(ii) The region 0.0.02Z #<<0.23 has negative CLE’s, but or 1, with a pulse width oL discrete-time steps. Thus the
a strongly positivex ;. Also, the CLE’s in this region appear message signas given by
to fluctuate strongly withy [Fig. 6(c)]. We conjecture that
the local Lyapunov exponents along some trajectories in this my=dy, K=[t/L].
region are too strongly positive to allow synchronization to

take hold, which corresponds to a tyfis-regime in terms of ~Each information bit producdsidentical message bits ard
the classification given at the end of Sec. II. can be seen as the per biiip rateof the system. The trans-

(i) The band of synchronization for 0.23<0.5 is in mitter consists of a drive oscillator with the parameters of the
fact two regions. For 0.286<0.35 the CLE'sA, andA, Y~ map modulated by the message signal. Such schemes
are negative and synchronization happens as discussed efve also been used by other research#s-44. The equa-
lier. This is a typedii) regime in terms of the classification tions for the transmitter system are given by
of Sec. Il. The synchronized trajectory obtained is chaotic d d d
becausen,;>0. However, there is clearly a qualitative  Yir1=t@NHuy[Ciyr+BY(z,6y) ]} —tant(uy Dyyy),

change in the system &t~ 0.23, with\ ; decreasing slightly (14)
(and becoming a more erratic function &f and\, increas- d g p
ing rapidly. 7, =tanK u,[AZ'+ ag(y{, ;. 6,) 1} —tant(u,BZ).

At 6~0.35 the CLE'sA, and A, approach zero and re- (15

main close to this valué¢or slightly positive until #~0.5.
Synchronization still emerges reliably in this region, presum-1 "€ parameters are modulated as
ably due to negative local Lyapunov exponents and finite

precision. This is a typév) regime in the terminology of fy, = pry (1+ ymy),
Sec. Il
(iv) At 8~0.5 there is another clear transitipsee Figs. ,u§ .
6(a) and Gc)] where both LE's and both CLE's jump to Ct:EC '
t

significantly positive values and the system displays maxi-
mum hyperchaos. This means that there is no volume- N
contracting direction remaining in phase space. The map has D :'“_VD*
become locally volume expanding and the dynamics is con- ! My, ’
fined purely by the limited range of the tanh() function
[41,13. Since coalescence, by definition, requires contracwhere y is a modulation parametétypically a small value,
tion, maximally hyperchaotic systems cannot be synchroe.g., 0.01) andL;‘ ,C*, andD* are nominal values used in
nized by this means and synchronization ceases to occur féhe receiver. The transmitted signal is given by
6>0.5.

(v) Finally, at 6~0.62 they and z maps become decou- st:g(z?,ey)_
pled becausd.=0.0 and # exceeds the maximum value
taken byz, andy,. The maps then evolve as two indepen-The receiver consists of a response oscillator driven by the
dent chaotic maps with identical LE’s. received signat,=s;+ 7;, where », is channel noise. The

equations for the response oscillator are

roo_ * * ' _ * k0
V. APPLICATION TO DIGITAL COMMUNICATIONS Yir1 tam{“y[c yitBe(rol} tanf(u, D YI)’(16)

The system of coupled oscillators described above can be
particularly useful for secure digital communication. In this  z{,,=tanH{u,[AZ +ag(yi, 1,6, ]} —tani u,BZ).
section we outline a possible system for such an application. a7
It should be noted that this is mainly a pedagogical system ) _
used to illustrate the principle and does not include mamyNote that thez maps for the transmitter and receiver are
featureie.g_, pre_encryption and redundamﬂyat could im- identical. Th%/ maps are identical Wherlnt=0 but not when
prove its performance, particularly with respect to security. ™=1. Essentially, the transmitter is usingz{,6) as the
The system consists of a transmitter and a receiver, botBpreading sequendé5,44 for the information signal.
of which are assumed to be digital devices with possibly Detection is accomplished by constructing the signal
very high but finite numerical precision. It is also assumed R
that, within each device, signals can be generated and com- s=9d(z ,6,)
municated without noise and that system parameters can be
set accurately down to the available precision. All these asat the transmitter and then comparing the Ms{<L) bits
sumptions are valid for digital systems with programmedof eachL-bit sequence corresponding to an information bit.
functionality. The primary impediment to reliable communi- Thus, for thekth information bitg, we get the decision vari-
cation is channel noise, which is inherently analog and indeable
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(iil) The map producing the transmitted sigrh(ai?) is not
directly modulated by the message. Rather, the map driving

o7l | it, f(y?), undergoes the actual modulation, making the de-
_ pendence of the transmitted signal on the modulation more
E complex.

0.3 S R B ey S P (iii) The modulation oif(y?) is specified such that, in the

absence of thﬂg(zf,e) drive, the maps would be identical
, , for m{=0 andm,=1. This ensures that the statistics of ;rﬁ’e
0 5000 10000 15000 signal produced in the two cases are extremely similar and
S0, as a result, are those gf This is especially true ify is
chosen small. We use a value p£0.01.
1 —— = = — (iv) The signals produced by the transmitter and receiver
(— are extremely sensitive to changes in parameter values. This
07k | makes it very difficult for an intruder to reconstruct the sys-
3 tem with sufficient accuracy. At the same time, it also puts
€ stringent requirements on legitimate transmitters and receiv-
03r 1 ers to match parameters very accurately. Such requirements
are standard in encrypted communication systgsis-57.
o— == — - 1 While these features certainly help to make the system
0 5000 10000 15000 secure, we do not claim that this meets the standards neces-
t sary for secure communications in practice. Our aim is to

FIG. 8. Transmitted message, and decoded messag&*' in elucidate the principle with the simplest possible system.
the communication system, withs,=u,=7.0, A=C=5.0, B Other enhancements such as encryption can be used to in-

=D=1.0, a=8=1.0, L=500, andN=20. The channel carrying Crease security furth¢62].

the message is subject to uniform noige U[ —0.1,0.. The low- One question that may be raised is whether the method we

amplitude trace in the upper graph is the mean value of the tranglescribe is more useful than existing ones based on standard

mitted signals, in the lengthL window for each message bit. Note random number generators. While every method has its

its random variation with respect to,, rendering it useless for an strengths and weaknesses, we believe our method is interest-

intruder. ing because it removes the need for presynchronization be-
tween the transmitter and receiver. Current spread spectrum
methods [45,46 use identical modulated wave forms

(k+1L (spreading sequencefor every information bit. However,

1 -
dk:ﬁ E |si—si, k=0,1,2..., (18 this method is not very secure because the same sequence is
t=(k+DL=N used repeatedly, providing greater opportunity for an in-

truder to estimate it. It would be much better to use nonre-

and the information bit is detected as peating spreading sequences for every bit, but that would

A 0 if dy<é require the receiver to know this sequence too. By providing
Q= . (19 a self-synchronizing aperiodic sequence to carry the mes-

1 otherwise. sage, our scheme, as well as other methods based on chaotic
synchronization, provides an elegant solution to this prob-

If L andN are such that synchronization emerges within
—N steps, the system will work. Whem,=1, the maps for
y? andy; do not match andi, has a value well above 0.
Whenq,=0, the maps are identicazt{j andz are synchro- VI. CONCLUSION
nized withinL — N steps, andi, has a value of 0. One can set

6 to a small nonzero value to allow some margin of error. . . ) .
rectionally connected chaotic oscillators can be synchronized

Also, makingN longer without violating the requirement on . : . . ;
L —N improves detection because brief episodes of intermit—ev.en.\’vhen the channel carrying the coupling s_|gnal IS NOISy.
'Hns is because synchronization does not require precise sig-

tent synchronization cannot cause errors. Figure 8 shows al

example of successful decoding by the proposed system i'ﬁal values, but depends only on gross signal statistics, which
the presence of uniform channel noise-U[ —0.1,0.1. A allows us to use a digitized coupling. We have also outlined

more detailed evaluation of the system’s performance will bé prototypical secure communication system based on our

presented elsewhere. Scheme.
The principal aim of the communication system above is

to make the transmitted signal as invariant as possible to the

information it carries, so that an eavesdropper who obtains

the signal cannot recover the information. Four features of The authors would like to thank Xin Wang, Tao Yang,

the system aid in this. Chai Wah Wu, Tom Carroll, Kevin Short, and Mingzhou
(i) The digital nature o§; makes the application of recon- Ding for providing reprints of their work. This work was

struction methods such as delay-coordinate embedding diffpartially supported by a grant from the Ohio Board of Re-

cult [47-49. gents.

lem.

In conclusion, we have demonstrated that identical unidi-
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