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Synchronization of chaotic maps through a noisy coupling channel with application
to digital communication

Ali A. Minai and Tirunelveli Anand
Department of Electrical and Computer Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio 45221-0

~Received 10 April 1998; revised manuscript received 9 July 1998!

While synchronization of coupled chaotic systems has been the subject of intensive research, many issues in
this field remain open. Among the most important of these is robustness to channel noise: Can synchronization
be guaranteed even if the coupling channel is noisy? This issue is of great significance if coupled chaotic
systems are to find use in communications, as has been suggested by some researchers. In this paper, we show
that chaotic maps can indeed be synchronized reliably even in the presence of some types of channel noise,
simply through the use of thresholding. This synchronization is reliable and rapid enough to be useful in
digitally implemented systems with finite precision. We also outline a simple communication scheme using the
proposed synchronization method.@S1063-651X~99!00901-0#

PACS number~s!: 05.45.Vx
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I. INTRODUCTION

Following the pioneering work by Pecora and Carr
@1,2#, there has recently been a surge of interest in the is
of synchronization in chaotic systems@3–5#. While most
work has focused on continuous-time systems, there are
some studies of synchronization between coupled discr
time maps@6–9,5,10–15#. Large systems of coupled map
have been investigated in detail by several researchers a
variety of complex behaviors, including clustering and sy
chronization, have been found@16–23#.

A major concern in all schemes for synchronizing coup
oscillators is robustness against noise in the channel carr
the coupling signal. It is well known that, for chaotic osc
lators, synchronization can be disrupted intermittently or p
manently in drastic ways by even a small amount of addit
noise @24,12,25#. In some cases, it is possible to overcom
this by increasing the strength of coupling, leading to
notion of high-quality synchronization@26,12#.

In recent reports@27,28# we have shown that identica
chaotic maps of a certain type can be synchronized w
driven by the same random two-level switching signal. Sin
the drive signal is digital in nature, additive channel no
can be removed from it by simple thresholding, making
synchronization robust against such noise. In this paper
demonstrate the utility of this idea. The rest of this pap
consists of four sections. In Sec. II we look at synchroni
tion between uncoupled maps driven by an externally s
plied digital signal. This extends our previous work report
in @27#. In Sec. III we develop results for synchronizatio
between coupled maps with internally derived digital sign
and these results are analyzed in Sec. IV. Finally, in Sec
we outline a possible application for the system in mas
communications.

II. SYNCHRONIZATION OF MAPS VIA RANDOM
DRIVING

We begin with a discussion of how two identical maps
a certain form synchronize when driven by a common dig
signal. This extends and refines the results presente
PRE 591063-651X/99/59~1!/312~9!/$15.00
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@27,28#. The map we use is the difference of two hyperbo
tangents

xt115 f ~xt ,ut!5tanh@m~axt1ut!#2tanh@mbxt#, ~1!

whereut is an external input. Ifut50 ; t, increasingm
with fixed a andb leads to chaotic dynamics through perio
doubling@29,30#. If m,a, andb are such that the autonomou
map is chaotic, applying a fixed inputut5u ; t leads to a
period-halving cascade with increasingu, culminating in a
period-2 regime@31#. Thus, for any fixedu, the mapf (x,u)
has a definite Lyapunov exponentl(u), which is positive for
smallu ~except in periodic windows! and negative for larger
u @27#.

Now consider two identicalf (x,u) maps driven by the
random telegraph signal~RTS! utP$L,H%, where 0<L
,H:

xt11
1 5 f ~xt

1 ,ut!5tanh@m~axt
11ut!#2tanh@mbxt

1#, ~2!

xt11
2 5 f ~xt

2 ,ut!5tanh@m~axt
21ut!#2tanh@mbxt

2#. ~3!

The input takes on the valueL with probabilityp andH with
probability 12p. Over a wide range of parameter setting
the two maps synchronize within a short period@27#. This is
the result ofcoalescence, a phenomenon analyzed in som
detail by others@32,33,7,34–36#. For synchronization to oc-
cur, the system and the input signal must satisfy some c
ditions, which we discuss next.

Defineet5xt
12xt

2 as the error phase variable for the sy
tem, with the dynamics

et115F~et ,xt
1 ,ut!5 f ~xt

1 ,ut!2 f ~xt
12et ,ut!.

Clearly, et50 is an invariant manifold for the system’s dy
namics. The stability of this manifold is determined by t
transverse conditional Lyapunov exponent~CLE! along the
(xt

1 ,ut) trajectory on theet50 manifold. This is given by
312 ©1999 The American Physical Society
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PRE 59 313SYNCHRONIZATION OF CHAOTIC MAPS THROUGHA . . .
L5^ lnu]F~et ,xt
1 ,ut!/]etu&5^ lnu f 8~x,u!u&

5 lim
T→`

1

T (
t5t

t1T21

lnu f 8~xt
1 ,ut!u, ~4!

where the partial derivative is evaluated alonget50, angular
brackets indicate averaging over the invariant distribution
(xt

1 ,ut) ~if it exists!, and f 8(x,u) is the derivative off (x,u)
with respect tox. Thus the CLE of the synchronized traje
tory for a time-varyingut with a stationary distributionP(u)
can be approximated byL5*uP(u)l(u)du. When ut
P$L,H% we get

L'pl~L !1~12p!l~H !. ~5!

Thus, by choosingp, L, andH appropriately, we can contro
the sign of the CLE for the synchronized trajectory@27#.
~Note that our use of the term ‘‘Lyapunov exponent’’ for
stochastically driven system follows the practice of other
searchers@32,33,7,34–36#.! Also, as we have shown else
where, many other input distributions can also produc
negative CLE, entailing stable synchronization@28,31#.
However, as discussed below, a negative CLE is not a s
cient condition for synchronization to emerge. In addition,
systems with finite precision, a negative CLE may also
be a necessary condition.

Assume thatH is chosen such thatut5H puts the system
in a period-2k regime. There are then 2k domains of attrac-
tion, one for each phase. Ifut were permanently set toH, our
two-map system would have 22k stable configurations, bu
only 2k of these would have identical phases. Thus, e
thoughL would be negative, the maps could converge t
configuration with different phases, precluding synchroni
tion. Now suppose that, after a long period withut5H, it is
temporarily set toL, which puts the system in the single
band chaotic~mixing! regime. The only periodic configura
tions that are guaranteed to survive this episode are thk

phase-matched ones. All others are rapidly disrupted. O
several switches betweenut5H and ut5L, the system is
driven to a phase-matched state by a process analogo
annealing, providedL is negative. The latter condition
means that, even if the system does not continuously sta
the periodic regime long enough to converge precisely t
periodic configuration, such convergence dominates ex
nential separationon averageand configurations close to be
ing phase-matched are usually, but not always~see below!,
disrupted less quickly in the mixing regime than configu
tions with very different phases. Synchronization by this p
cess is therefore a statistical phenomenon.

To illustrate these points, Fig. 1 shows how a set of
uniformly distributed initial conditions evolve in response
three types of driving inputs:~a! a RTS inpututP$0,1% and
p50.5, ~b! a fixed input ofut50.0 ; t ~mixing only!, and
~c! a fixed input of ut51.0 ; t ~period-2 only!. As ex-
pected, synchronization occurs only in the first case. In
caseut50.0, the system evolves rapidly to the invariant de
sity of the chaotic map, while forut51.0, it coalesces into
two clusters, one for each phase of the period-2 cycle.

The above analysis gives us the following conditions
utP$L,H% for synchronization to emerge.
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~i! The Lyapunov exponent of the random mapf (x,u)
must be negative, i.e., the relative frequencies ofL and H
must be such that the resultingL value is negative. Note tha
a negativeL does not preclude aperiodicity since it is only
conditional Lyapunov exponent~with respect to the random
driving input ut). The total (xt ,ut) system is still aperiodic,
with the randomness ofut supplying the volume expansio
necessary to prevent collapse to a periodic attractor. Qu
tatively, the dynamics ofxt consists of alternating variabl
length episodes of chaotic and periodic evolution.

~ii ! L must be chosen to put the system in the single-b
chaos~mixing! regime andH to put it in a low-period cyclic
regime. ChoosingH is typically a simple matter since th
period-2 regime is very extensive. To chooseL we need to
know the value ofu, designatedu* , where the mixing re-
gime ends. WhenH is such thatf (x,H) is a period-2 orbit,
the two basins for the phases of the orbit are separated by
unstable fixed pointx* 5 f (x* ,H). For maps with largema,
the tail of f (x,u) is approximated accurately byf (x,u)51
2tanh(mbx), so that the fixed point is given by the solutio
of x* 512tanh(mbx* ) and is effectively independent ofu.
The boundary value ofu for single-band chaos can then b
stated asu* 5u: f (0,u)5x* , which gives

FIG. 1. Evolution of the state histogram for 50 identical ma
with m57.0, a55.0, andb51.0. The initial condition for thekth
map is given byx0

k50.02(k21),k51, . . . ,50,giving a uniform
distribution. All maps get identical inputs:~a! random telegraph
signal inpututP$0,1%, ~b! fixed inputut50 ; t ~chaotic phase!,
and~c! fixed inputut51 ; t ~periodic phase!. Synchronization is
apparent in~a!, while in ~c! the population divides into two group
corresponding to the phases of the period-2 orbit.
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u* 5tanh21~x* !/m.

Synchronization requiresL<u* . Figure 2 shows the actua
empirically determined threshold value ofL needed for reli-
able synchronization and the theoretical valueu* over a
range ofm with a55.0,b51.0, andp50.5, confirming the
validity of the L<u* requirement. Analogous calculation
can be made for the required value ofL if u5H puts the
system in a 4- or 8-cycle.

While a negative CLE is essential for synchronization
is not a sufficient condition. The emergence of synchroni
tion also depends on localized characteristics of the dyn
ics and the maps. For example, suppose that the sy
switches into the mixing regime at timet1 with uet1

u5uxt1
1

2xt1
2 u5d, whered is very small, and remains there forT

steps before switching back into the periodic regime. IfT is
not too large, the growth of the absolute error is appro
mately given by

uet11Tu'F )
t5t1

t11T21

u f 8~j t ,ut!uG uet1
u,

wherej t[(xt
11xt

2)/2. Clearly, the extent to which the nea
synchronization survives this episode depends on the ac
values of f 8(j t ,ut) over the finite durationt1 to t11T21
and not so much on whether the overall condition
Lyapunov exponent is negative. The quantity

L̂T~xt1
1 ,xt1

2 ,ut1
, . . . ,ut11T21![

1

T (
t5t1

t11T21

lnu f 8~j t!u

is called alocal Lyapunov exponent@7,34# and is, in this
case, a random variable. The dynamics of synchroniza
depends also on the distribution of the local Lyapunov ex
nents, which in turn depends on the underlying map,
invariant disctribution of the dynamics, the initial condition
and the realization of the driving random process.

To take a concrete example, consider two identical r
domly driven logistic maps of the form

FIG. 2. Comparison of the empirically determined maximaL
value needed for synchronization (L) and the theoretical value
given by u* ~solid line! for different values ofm. In all cases,a
55.0, b51.0, andp50.5.
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Xt11
1 5G~Xt

1 ,ut!5~42ut!Xt
1~12Xt

1!,

Xt11
2 5G~Xt

2 ,ut!5~42ut!Xt
2~12Xt

2!,

with utP$0,1% as before. We find that the Lyapunov exp
nent of the random maps~and thus the CLE of the synchro
nization manifold! becomes negative whenp,0.95 or so.
However, synchronization only occurs forp'0.5 or less.
The reason is that, whenut50 and the maps are in chao
most values ofu]G(X,u)/]Xu are quite large, implying large
positive local Lyapunov exponents that grow rapidly withT.
Thus synchronization cannot take hold if the system spe
significant periods in the mixing regime andp must be made
very small. Of course, synchronization would also not ha
pen if p50 since some mixing is essential. Thus the range
p in which logistic maps can synchronize is very narrow.
contrast, thef (x,u) map that we use hasu] f (x,u)/]xu!1
over a large part of its domain even in the chaotic regim
This ensures that local Lyapunov exponents grow relativ
slowly with T, which translates into a larger range ofp over
which synchronization happens. Thus, while the synchro
zation process we describe is quite general, it is more s
able for maps where expansion is localized in small regi
of phase space during the mixing regime.

We term the synchronization process discussed ab
coalescence-based synchronizationto distinguish it from
methods based on differential feedback@6,7,9,11,15#. The
dependence of coalescence on local Lyapunov expon
makes it susceptible to two phenomena that occur also
feedback-based schemes to a lesser degree. These areattrac-
tor bubbling @24# and on-off intermittency@32,33,37,25#.
However, when the underlying system is implemented d
tally with finite precision~e.g., a digital communications sys
tem or an encryption program!, both bubbling and intermit-
tency are mitigated in broad regimes, as discussed below

Attractor bubbling@24# occurs because the CLE for th
synchronized trajectory can be negative without preclud
finite-duration episodes of divergence between nearby tra
tories due to positive local Lyapunov exponents. Howev
since the synchronized trajectory is the only long-term
tractor, these episodes of desynchronization are always t
sient ~if there are other attractors, one gets basin riddl
@38#!. Over time, the trajectory spends most of its time in
near the synchronized state, with rare interruptions. Ho
ever, for systems implemented digitally, finite precision e
sures that the desynchronization episodes cease once
chronization error has fallen below numerical precisio
Empirical data shown in Fig. 3 indicate that, beginning w
ue0u;O(1), the time, te needed foruetu to fall below e
scales aste; log10(1/e). Thus synchronization to even ver
high precision occurs within a short time.

On-off intermittency@32,33,37,25,39#, which is the con-
verse of bubbling, occurs when the CLE for the synch
nized trajectory is positive, but there are finite-duration e
sodes of convergence between trajectories due to neg
local Lyapunov exponents. This results in intermittent lam
nar and turbulent periods with characteristic scaling in th
duration. Again, if the system is implemented with fini
precision, these episodes of convergence can lead to a
synchronization when the trajectories of the two maps co
closer than the system’s precision. Thus finite-precision s
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PRE 59 315SYNCHRONIZATION OF CHAOTIC MAPS THROUGHA . . .
tems can synchronize even when the CLE is positive. Ho
ever, such synchronization would be disrupted very easily
a small perturbation.

To summarize the discussion in this section, we can id
tify four broad regimes with respect to synchronization
systems with finite precision.

~i! An asynchronous regime with a positive CLE. Sy
chronization is not stable on average and local Lyapu
exponents are not able to drive the system into fin
precision synchronization.

~ii ! An asynchronous regime with a negative CLE. Sy
chronization is stable on average, but either~a! local
Lyapunov exponents during the mixing phase are
strongly positive to allow sufficient convergence of trajec
ries in general or~b! L does not place the system in th
mixing regime.

~iii ! A synchronous regime with a negative CLE. Sy
chronization is stable on average and trajectories converg
within any finite precision in linear time. This is the regim
of primary interest and utility from our viewpoint. Note tha
while finite precision makes synchronization reliable a
nonintermittent, synchronization is notcausedby finite pre-
cision. That is shown by the linear dependence of synch
nization time on numerical precision.

~iv! A synchronous regime with a positive CLE. Synchr
nization is unstable on average, but local Lyapunov ex
nents are sufficiently negative to drive trajectories closer t
system precision. This requires that at least one Lyapu
exponent for the underlying system be negative. Some
these regimes are discussed below in the context of cou
maps.

III. SYNCHRONIZATION IN COUPLED MAPS

A natural question that arises from the foregoing result
whether the RTS input used for synchronizing can co
from another aperiodic or chaotic map. In that case,
would have a synchronizable deterministic system. We st
this issue by defining a system comprising a pair of ident
two-dimensional maps. Each map, which we henceforth t
an oscillator, is constructed from twof (x,u) maps. The os-

FIG. 3. First passage timets as a function of synchronization
tolerancee for xt

1 and xt
2 . The system parameters arem57.0, a

55.0, b51.0, utP$0,1%, and p50.3(3), p50.5(s), and p
50.7(L). All simulations were done at a precision of 10216. Note
the linear dependence ofts on log10(1/e). Each point was average
over 100 random initial conditions.
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cillators are termed thedrive oscillator~d! and theresponse
oscillator ~r! and the system is given by

yt11
d 5 f y~yt

d ,zt
d!5tanh$my@Cyt

d1bg~zt
d ,uy!#%

2tanh~myDyt
d!, ~6!

zt11
d 5 f z~zt

d ,yt
d!5tanh„mz$Azt

d1ag@ f y~yt
d ,zt

d!,uz#%…

2tanh~mzBzt
d!, ~7!

yt11
r 5 f y~yt

r ,zt
d!5tanh„my$Cyt

r1bf@g~zt
d ,u!1h t#%…

2tanh~myDyt
r !, ~8!

zt11
r 5 f z~zt

r ,yt
r !5tanh„mz$Azt

r1ag@ f y~yt
r ,zt

d!,uz#%…

2tanh~mzBzt
r !, ~9!

wheremy ,mz ,A,B,C,D,a, andb are fixed parameters an
g(x,u) is a thresholding function that turns its analog arg
mentx into a telegraph signal. It is defined as

g~x,u!5H L if x,u

H if x>u,
~10!

whereL andH are constants andu is a specified threshold
For simplicity, we assume thatuz5uy5u,L50.0, andH
51.0. We also assumea5b, though a broad range of value
can be used instead. The coupling between the oscillato
provided only by theg(zt

d ,u) signal generated by the driv
system. The signal received by the response system
g(zt

d ,u)1h t , whereh t is zero-mean additive channel nois
We assume that there is no essential noise in the system
the noise is added only to the coupling signal, not to
system’s phase variables. The functionf() is a threshold
filter that attempts to recover the correct digital signal fro
the received noisy one:

f~x!5H L if x,L1~H2L !/2

H otherwise.
~11!

This, of course, corresponds to optimal estimation for ze
mean noise with a symmetric distribution. If the additiv
noise has another known distribution,f(x) can be defined
appropriately. Clearly, ifh t has a distribution with bounded
support@2c,1c# ~e.g., a uniform distribution!, the system
will be immune to its effect whilec,(H2L)/2. If h t has
infinite support~e.g., a Gaussian distribution!, but is largely
confined to a narrow band of width less thanH2L, synchro-
nization will be robust with rare episodes of intermittency

The system described in Eqs.~6!–~9! can be seen as two
subsystems of the type discussed in Sec. II@Eqs.~2! and~3!#.
The (yt

d ,yt
r) subsystem is driven by the ‘‘external’’ inpu

g(zt
d ,uy) and the (zt

d ,zt
r) system is driven by external input

g(yt
d ,uz) andg(yt

r ,uz), respectively, which become ident
cal once they signals synchronize. Thus the processes
scribed in Sec. II apply directly to the coupled subsystem
except that the aperiodic driving inputs are now coming fro
another map rather than from a stochastic process.
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We begin by showing that the system described ab
synchronizes in the absence of channel noise. The sync
nization error in they andz variables, respectively, is define
as

et11
y 5yt11

d 2yt11
r 5Fy~et

y ,yt
d ,zt

d!,

et11
z 5zt11

d 2zt11
r 5Fz~et

z,et
y ,yt

d ,zt
d!,

and (ey,ey)5(0,0), which is an invariant manifold for th
system’s dynamics, is termed thesynchronization manifold
(SM). The local stability of the SM along a (yt

d ,zt
d) trajectory

can be evaluated by looking at the transverse conditio
Lyapunov exponents~CLE’s! for the (et

y ,et
z) system. The

Jacobian along the trajectory is given by

J5F ]Fy /]ey ]Fy /]ez

]Fz /]ey ]Fz /]ezG .
Since]Fy /]ez50, the eigenvalues ofJ are simply the diag-
onal elements, which allows the evaluation of the two tra
verse CLE’s

Ly5 lim
T→`

1

T (
t5t

t1T21

lnu]Fy /]eyu, ~12!

Lz5 lim
T→`

1

T (
t5t

t1T21

lnu]Fz /]ezu, ~13!

where the derivatives are evaluated at (ey,ez)5(0,0). Note
that, as in the case of one-dimensional maps~Sec. II!, the
CLE’s are expected to be negative in the synchroniza
regime. However,Ly and Lz are not the Lyapunov expo-
nents of the (yt ,zt) system and their negativity does n
imply a lack of chaos. As we show below, the synchroniz
trajectory is indeed chaotic in most situations.

To determine whether synchronization actually emerg
we simulated the coupled oscillator system ina-u space,
with A5C55.0, B5D51.0, andmy5mz57.0. As men-
tioned earlier, we useb5a and $L,H%5$0,1%. The results

FIG. 4. Dependence onu and a5b of synchronization prob-
ability for a pair of coupled oscillators with noise-free couplin
with mz5my57.0, A5C55.0, andB5D51.0. White indicates
that synchronization always occurred in 20 independent runs.
the text for a discussion.
e
ro-

al

-

n

d

s,

are shown in Fig. 4. There is a distinct parameter ran
~white region in the figure! where synchronization doe
emerges reliably.

The dependence of synchronization ona ~and b) is as
expected. If it is too small, the maps never enter the perio
regime and the CLE’s are positive. Once this threshold
met, any value ofa and b will do. L50 ensures that the
maps always spend time in the mixing regime~if u is set
appropriately!. The dependence of synchronization onu is
more complex. Synchronization seems to occur in two str
one for small u values and one approximately given b
0.23<u<0.50. The reasons for this pattern are discus
further in Sec. IV.

Finally, we look at whether synchronization occurs as e
pected in the case when channel noise is present. Figu
shows the probability of synchronization for the uniform a
Gaussian noise cases for a pair of oscillators withmy5mz
57.0, A5C55.0, B5D51.0, a5b51.0, and $L,H%
5$0,1%. The dependence on the noise strength is as
pected, with a sharp cutoff atc5(H2L)/2 for uniform
noise. For Gaussian noise, synchronization cannot be ce
because the probability of suprathreshold noise is nonz
However, synchronization is obtained with high probabil

ee

FIG. 5. Dependence onu of synchronization probability for a
pair of coupled oscillators withmz5my57.0, A5C55.0, B5D
51.0, anda5b51.0. The channel carrying the synchronizing si
nal is subject to~a! uniform noise between6c and ~b! Gaussian
noise with variances2. White indicates synchronization with prob
ability 1 over 10 independent runs.
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FIG. 6. Graph~a! shows the two Lyapunov exponentsl1 and l2 for the two-dimensional map given by Eqs.~6! and ~7!, with mz

5my57.0, A5C55.0, B5D51.0, anda5b51.0. Graph~c! shows the CLE’sLy andLz in the same situation. Graphs~b! and~d! show
the same data as~a! and ~c!, respectively, with finer resolution over the window 0<u<0.05.
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~i.e., with rare episodes of desynchronization! within a range
of c values. The dependence onu is as for the noise-free
case.

IV. DISCUSSION OF RESULTS

In this section we discuss the results shown in Fig.
which elucidate the processes underlying the synchroniza
phenomenon. An important issue that arises is whether
synchronized trajectory obtained in our coupled maps is c
otic at all. This question is particularly relevant because
conditional Lyapunov exponentsLy and Lz are generally
expected to be negative for both drive and response map
the synchronization regimes. However, this does not m
that the dynamics of the drive and response maps is non
otic. To verify this, we numerically calculate@40# the two
Lyapunov exponentsl1 andl2 of the map defined by Eqs
~6! and ~7! with mz5my57.0, A5C55.0, B5D51.0, a
5b51.0, and different values ofu. We usel1 to indicate
the larger Lyapunov exponent. Figures 6~a! and 6~b! show
that thel1 is positive for u.0.027 and for many smalle
values too. However, the conditional Lyapunov expone
Ly and Lz do not become positive untilu.0.35. Asu in-
creases further, the coupling between they and z maps be-
comes weaker and atu<0.5 both Lyapunov exponents fo
the map become positive, which is the condition of ma
mum hyperchaos found in weakly coupled chaotic maps
some other noninvertible systems@41#. Finally, whenu ex-
ceeds the maximum valueyt or zt takes~about 0.613), they
andz maps become uncoupled~sinceL50.0) and behave a
independent chaotic maps with Lyapunov exponents of ab
0.41. Figure 7 shows the bifurcation diagrams for they andz
maps asu is changed.

A comparison of these results with the synchronizat
results of Fig. 4 provides insight into the pattern of synch
nization.
,
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~i! Synchronization for 0,u<0.027 is actually more
complicated than it looks in Fig. 4, which has a resolution
only 0.005 along theu axis. Figure 6~b! indicates that the
0,u<0.027 region has a finely interwoven structure of ch
otic and periodic windows. In the chaotic windows, synch
nization occurs as described earlier and the synchronized
jectory is chaotic. However, synchronization can also hap
in the periodic windows because of a transient effe
Though the system is not chaotic, the chaotic transien
evolving to the periodic orbit is long enough to allow sy
chronization, i.e., the system uses the chaos before it di
pears. This is supported by the fact that the Lyapunov ex

FIG. 7. Bifurcation diagrams for the map given by Eqs.~6! and
~7! asu is varied. The parameters are set as in Fig. 6. Compare
bifurcation diagrams with Fig. 6~a!.
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nents~LE’s! for the system are only weakly negative in th
periodic windows, suggesting slow convergence. Of cou
the synchronized trajectory obtained in these cases is p
odic rather than chaotic.

~ii ! The region 0.0.027,u,0.23 has negative CLE’s, bu
a strongly positivel1 . Also, the CLE’s in this region appea
to fluctuate strongly withu @Fig. 6~c!#. We conjecture that
the local Lyapunov exponents along some trajectories in
region are too strongly positive to allow synchronization
take hold, which corresponds to a type-~ii ! regime in terms of
the classification given at the end of Sec. II.

~iii ! The band of synchronization for 0.23<u,0.5 is in
fact two regions. For 0.23<u<0.35 the CLE’sLy and Lz
are negative and synchronization happens as discussed
lier. This is a type-~iii ! regime in terms of the classificatio
of Sec. II. The synchronized trajectory obtained is chao
becausel1.0. However, there is clearly a qualitativ
change in the system atu'0.23, withl1 decreasing slightly
~and becoming a more erratic function ofu) andl2 increas-
ing rapidly.

At u'0.35 the CLE’sLy andLz approach zero and re
main close to this value~or slightly positive! until u'0.5.
Synchronization still emerges reliably in this region, presu
ably due to negative local Lyapunov exponents and fin
precision. This is a type-~iv! regime in the terminology of
Sec. II.

~iv! At u'0.5 there is another clear transition@see Figs.
6~a! and 6~c!# where both LE’s and both CLE’s jump t
significantly positive values and the system displays ma
mum hyperchaos. This means that there is no volum
contracting direction remaining in phase space. The map
become locally volume expanding and the dynamics is c
fined purely by the limited range of the tanh( ) functio
@41,13#. Since coalescence, by definition, requires contr
tion, maximally hyperchaotic systems cannot be synch
nized by this means and synchronization ceases to occu
u.0.5.

~v! Finally, at u'0.62 they and z maps become decou
pled becauseL50.0 and u exceeds the maximum valu
taken byzt and yt . The maps then evolve as two indepe
dent chaotic maps with identical LE’s.

V. APPLICATION TO DIGITAL COMMUNICATIONS

The system of coupled oscillators described above can
particularly useful for secure digital communication. In th
section we outline a possible system for such an applicat
It should be noted that this is mainly a pedagogical sys
used to illustrate the principle and does not include ma
features~e.g., pre-encryption and redundancy! that could im-
prove its performance, particularly with respect to securi

The system consists of a transmitter and a receiver, b
of which are assumed to be digital devices with possi
very high but finite numerical precision. It is also assum
that, within each device, signals can be generated and c
municated without noise and that system parameters ca
set accurately down to the available precision. All these
sumptions are valid for digital systems with programm
functionality. The primary impediment to reliable commun
cation is channel noise, which is inherently analog and in
e,
ri-

is

ar-

c

-
e

i-
e-
as
-

-
-

for

-

be

n.
m
y

th
y
d
m-
be
s-

-

pendent of the system. The goal of our system is to prov
reliable masked communication in the presence of chan
noise.

The information signal qk ,k50,1,2, . . . , takes values 0
or 1, with a pulse width ofL discrete-time steps. Thus th
message signalis given by

mt5qk , k5 bt/L c.

Each information bit producesL identical message bits andL
can be seen as the per bitchip rateof the system. The trans
mitter consists of a drive oscillator with the parameters of
yd map modulated by the message signal. Such sche
have also been used by other researchers@42–44#. The equa-
tions for the transmitter system are given by

yt11
d 5tanh$myt

@Ctyt
d1bg~zt

d ,uy!#%2tanh~myt
Dtyt

d!,
~14!

zt11
d 5tanh$mz@Azt

d1ag~yt11
d ,uz!#%2tanh~mzBzt

d!.
~15!

The parameters are modulated as

myt
5my* ~11gmt!,

Ct5
my*

myt

C* ,

Dt5
my*

myt

D* ,

whereg is a modulation parameter~typically a small value,
e.g., 0.01) andmy* ,C* , andD* are nominal values used i
the receiver. The transmitted signal is given by

st5g~zt
d ,uy!.

The receiver consists of a response oscillator driven by
received signalr t5st1h t , whereh t is channel noise. The
equations for the response oscillator are

yt11
r 5tanh$my* @C* yt

r1bf~r t!#%2tanh~my* D* yt
r !,

~16!

zt11
r 5tanh$mz@Azt

r1ag~yt11
r ,uz!#%2tanh~mzBzt

r !.
~17!

Note that thez maps for the transmitter and receiver a
identical. They maps are identical whenmt50 but not when
mt51. Essentially, the transmitter is usingg(zt

d ,u) as the
spreading sequence@45,46# for the information signal.

Detection is accomplished by constructing the signal

ŝt5g~zt
r ,uz!

at the transmitter and then comparing the lastN (,L) bits
of eachL-bit sequence corresponding to an information b
Thus, for thekth information bitqk we get the decision vari-
able
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dk5
1

N (
t5~k11!L2N

~k11!L

ust2 ŝtu, k50,1,2, . . . , ~18!

and the information bit is detected as

q̂k5H 0 if dk,d

1 otherwise.
~19!

If L and N are such that synchronization emerges withinL
2N steps, the system will work. Whenqk51, the maps for
yt

d and yt
r do not match anddk has a value well above 0

Whenqk50, the maps are identical,zt
d andzt

r are synchro-
nized withinL2N steps, anddk has a value of 0. One can s
d to a small nonzero value to allow some margin of err
Also, makingN longer without violating the requirement o
L2N improves detection because brief episodes of interm
tent synchronization cannot cause errors. Figure 8 show
example of successful decoding by the proposed system
the presence of uniform channel noiseh;U@20.1,0.1#. A
more detailed evaluation of the system’s performance will
presented elsewhere.

The principal aim of the communication system above
to make the transmitted signal as invariant as possible to
information it carries, so that an eavesdropper who obta
the signal cannot recover the information. Four features
the system aid in this.

~i! The digital nature ofst makes the application of recon
struction methods such as delay-coordinate embedding d
cult @47–49#.

FIG. 8. Transmitted messagemt and decoded messagemt
est in

the communication system, withmz5my57.0, A5C55.0, B
5D51.0, a5b51.0, L5500, andN520. The channel carrying
the message is subject to uniform noiseh;U@20.1,0.1#. The low-
amplitude trace in the upper graph is the mean value of the tr
mitted signalst in the lengthL window for each message bit. Not
its random variation with respect tomt , rendering it useless for an
intruder.
.

t-
an
in

e

s
he
s
f

fi-

~ii ! The map producing the transmitted signalf (zt
d) is not

directly modulated by the message. Rather, the map driv
it, f (yt

d), undergoes the actual modulation, making the
pendence of the transmitted signal on the modulation m
complex.

~iii ! The modulation off (yt
d) is specified such that, in the

absence of thebg(zt
d ,u) drive, the maps would be identica

for mt50 andmt51. This ensures that the statistics of theyt
d

signal produced in the two cases are extremely similar
so, as a result, are those ofst . This is especially true ifg is
chosen small. We use a value ofg50.01.

~iv! The signals produced by the transmitter and recei
are extremely sensitive to changes in parameter values.
makes it very difficult for an intruder to reconstruct the sy
tem with sufficient accuracy. At the same time, it also p
stringent requirements on legitimate transmitters and rec
ers to match parameters very accurately. Such requirem
are standard in encrypted communication systems@50–52#.

While these features certainly help to make the syst
secure, we do not claim that this meets the standards ne
sary for secure communications in practice. Our aim is
elucidate the principle with the simplest possible syste
Other enhancements such as encryption can be used t
crease security further@52#.

One question that may be raised is whether the method
describe is more useful than existing ones based on stan
random number generators. While every method has
strengths and weaknesses, we believe our method is inte
ing because it removes the need for presynchronization
tween the transmitter and receiver. Current spread spec
methods @45,46# use identical modulated wave form
~spreading sequences! for every information bit. However,
this method is not very secure because the same sequen
used repeatedly, providing greater opportunity for an
truder to estimate it. It would be much better to use non
peating spreading sequences for every bit, but that wo
require the receiver to know this sequence too. By provid
a self-synchronizing aperiodic sequence to carry the m
sage, our scheme, as well as other methods based on ch
synchronization, provides an elegant solution to this pr
lem.

VI. CONCLUSION

In conclusion, we have demonstrated that identical un
rectionally connected chaotic oscillators can be synchroni
even when the channel carrying the coupling signal is no
This is because synchronization does not require precise
nal values, but depends only on gross signal statistics, w
allows us to use a digitized coupling. We have also outlin
a prototypical secure communication system based on
scheme.
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